
The Ceptre Editor: A Structure Editor for
Rule-Based System Simulation
1stAlexander Card

Principles of Expressive Machines Lab
Department of Computer Science
North Carolina State University

Raleigh, USA
acard@ncsu.edu

2nd Chris Martens
Principles of Expressive Machines Lab

Department of Computer Science
North Carolina State University

Raleigh, USA
crmarten@ncsu.edu

Abstract—Systems understanding is a skill required to solve
many of the world’s most important problems, from climate
change to immunotherapy to social decision-making. However,
these problems also require communication among experts with
diverse skill sets and academic backgrounds. Our long-term goal
is to facilitate systems understanding across a range of disciplines
through end-user computational modeling tools. This paper
presents the Ceptre Editor, a structure editor for the rule-based
programming language Ceptre. The Ceptre Editor runs in the
browser and offers a visual interface and integrated development
environment for Ceptre, following design recommendations from
end-user programming, with the goal of providing discoverable
affordances for program construction and maintaining syntactic
well-formedness at each edit state. We performed a preliminary
evaluation of the tool through a qualitative study, assessing the
editors effectiveness at helping users understand and extended a
system model, and found promising results regarding learnability
and mental model accuracy.

Index Terms—rule-based programming, structure editors, end
user programming

I. Introduction

Systems thinking, defined by the ability to achieve deep
causal understanding of the relationship between parts in
a complex system, is a critical skill for problem-solving
in many disciplines, including physical sciences, economics,
medicine, social and decision sciences, and urban planning. One
activity hypothesized to support the development of systems
thinking skills is computational modeling, or building virtual
simulations of systems that can be executed, analyzed, and
queried. A number of existing computational modeling tools
support tasks in specific domains, such as Kappa [1] for
molecular signaling networks and Kodu [2] for digital arcade
games, but these systems provide the user with a fixed set of
language primitives that cannot be combined or easily extended.
General-purpose modeling tools, such as GoldSim, Simulink
and MATLAB, rely on some combination of general-purpose
imperative programming skills and mathematical reasoning
techniques. These prerequisites can hinder audiences such as:
(1) members of interdisciplinary teams with diverse training;
(2) novice scientists or practitioners within a discipline trying
to get up to speed with current theories; (3) policymakers or

978-1-7281-0810-0/19/$31.00 2019 IEEE

members of the general public who want to understand the
impact of systemic changes.

Rule-based programming has emerged as a promising
computational modeling paradigm for a number of domains that
require systems thinking, such as molecular interactions [3]–[5],
security protocols [6], and multi-agent systems [7]. Therefore,
we are evaluating rule-based programming as an appropriate
programming model for systems understanding. In rule-based
programming, programmers specify sets of possible program
states as logical assertions, then define rewrite rules that update
the state based on a logical description of the rule’s conditions
and effects. We use the Ceptre programming language [8], based
on forward-chaining linear logic programming corresponding
to multiset rewriting, as a starting point for this work.

In this paper, we describe our efforts to bring end-user
programming tool design principles to the Ceptre programming
language through a new editing environment. We created a GUI
programming tool that allows users to develop Ceptre programs
in a scaffolded way that maintains the well-formedness of the
syntax tree, based on the principles of structure editing (editing
the structure of the program, rather than the text). This editor
is similar to the block-based programming environments that
have been successful at introducing novices to procedural
programming in that it (a) provides discoverable affordances
that scaffold the user’s program creation process; (b) maintains
the well-formed structure of partial programs by enforcing type
constraints through the user interface.

Our contributions are as follows: (1) A structure editor for
a multiset rewriting-based programming language, designed
for learnability and usability (2) A human-centered evaluation
of such a language, resulting in evidence for use in rapidly
constructing and modifying new system models for end users.

II. RelatedWorks

Many modern introductory programming tools implement
designs which guide the end user in manipulating the program
structure, instead of directly editing code in a text file. One
common instrument for maintaining program structure is known
as block programming. Block programming breaks the language
semantics into separate blocks, helping guide the user during the

creation of the program. As block shape determines placement,
the user cannot place a block in a syntactically incorrect place.

Block based languages such as Scratch [9], or Alice2 [10],
are used to introduce newcomers to programming, as well as
mitigate issues which can arise from language syntax. Scripting
languages or specialized languages are frequently seen in the
introductory tools. This allows for a more friendly environment
for novices which has a positive effect on learning [11].

Research on introductory programming languages such as
Scratch, Greenfoot [12], or Alice2 has shown that maintaining
syntactic well-formedness has a positive effect on the user’s
ability to learn to program in an imperative language, and
that modifying program structure instead of text-based code
provides benefits for programming novices. In this work we
take a similar design and implement it as an editor for a
rule-based programming language.

Various introductory programming tools approach the prob-
lem of well-formedness differently. Scratch for example,
assumes default values for any program element which has
not been initialized, while other languages such as micro:bit
[13] select values from the drop-down immediately when
created. These options do not separate code being edited from
code which the user is done editing, and may execute code
currently being edited. We introduce an locking system which
we hypothesize will help reduce frustrations caused by syntactic
and typographical errors, while not executing unfinished code.

AgentSheets [14] and Kodu [15] are end-user programming
tools which use rule-based languages, where the rules are
condition/action pairs. These condition/action pairs are attached
to an agent or object in the system and when the condition is
met, will execute the associated action. Our approach differs
from AgentSheets and Kodu by using multiset rewriting: rules
are not attached to any construct in the system, instead re-
writing the multiset to create successive states.

System simulation tools, such as COMSOL [16], Simulink
[17], and GoldSim [18], utilize a drag and drop interface
which allows the end user to create a system by dragging
components into the editor and connecting the components
in a domain-specific way. This allows the end user to define
certain structures without needing to modify the underlying
language. However, since the ways to connect components are
defined in domain-specific ways, introducing new component
types require a modification to the underlying language [19].

Kappa [1], a rule-based system designed for molecular
systems biology modeling, provides the end-user-programmer
with an integrated development environment for creating
molecular systems in the textual language. We differ in this
work by incorporating design decisions from introductory
programming tools to facilitate novice end-user-programming,
and do not specifically target any specific modeling domain.

In addition, much of the existing research on these tools are:
extensions of the language [20], simulations created using the
tool [21], [22], or uses a differing visual language for design
and modeling [23], [24]. In this work we strive to maintain a
friendly, generalized environment for the end-user-programmer.

III. Background

Before introducing the editor and discussing the evaluation,
we introduce the Ceptre language through an example in an
ecology-inspired domain. In this example, system states consist
of predator (fox) and prey (rabbit) populations, and rules
manipulate these populations by modeling predation (foxes eat
rabbits) and reproduction (both rabbits and foxes multiply).

Ceptre is a rule-based specification language [8] which uses
logic to represent the rules of a system. A Ceptre program
represents system states (configurations) as multisets of logical
predicates and defines rules that can manipulate those multisets,
replacing certain facts by others. The structure of a Ceptre
program consists of type and predicate definitions, an unordered
set of rules, and a description of the initial state.

In Ceptre, simulation states are represented by multisets of
ground predicates. These multisets contain all the information
that is true in the current simulation state. Using these multisets,
the simulation is progressed by the use of rules, which change
the state by taking preconditions in the current simulation state,
and replacing the preconditions with new ground predicates
that follow the fixed rule structure. This allows the states to
change constrained by rules set forth by the author.

Describing the rules requires the definition of two symbols:
* called tensor, which conjoins predicates, and (called lolli,
which is the transition operator. In the predator/prey model,
there could be a rule rabbit_grow_mature :rabbit young
(rabbit mature which requires a young rabbit as a

condition, which is replaced by a mature rabbit.
Ceptre’s types describe the domains over which program

terms can range. Terms represent the nouns in the language, or
the objects we want to refer to in predicates. In the ecological
predator/prey model, we will use two types, age and hunger,
representing age and hunger for the animals in the simulated
system. We represent three ages (young, mature, and old)
and two hunger levels (hungry and sated) to represent the
states of individuals in the population that the rules modify.

Predicates can represent additional information about types,
or information which is true in the world. For example, in
an ecological predator/prey model, there could be a predicate
rabbit age, denoting a rabbit’s age.

IV. Ceptre Editor

As we intend the Ceptre editor to be approachable by
programming novices and researchers communicating across
domains, the editor should primarily focus on providing the user
with an integrated development environment which minimizes
the frustrations caused by syntactic and typographical errors.
The editor is hosted at microceptre.glitch.me, and the source
is at https://github.ncsu.edu/acard/microceptre. Images of the
editor are included in the supplementary materials.

A. Design Philosophy

In this work we hypothesize that a structure editor built
using similar features as the previous editors would afford an
integrated development environment which would minimize
frustration caused by syntactic and typographical errors for a

rule-based programming language. For this purpose, the Ceptre
Editor uses a modified subset of Ceptre for the language,
representing a world through sets, predicates, rules, and atoms.
Sets are analogous to Ceptre’s types, functioning as groupings
of objects and things in the world.

B. Editing the Model

In an attempt to minimize syntactic and typographical errors,
the editor only allows users to type information when naming
a set or predicate, and adding a set element or rule variable. In
each case, once the user has named the program component,
the component appears in menus of options which contain
program components of that type. Any time an edit is made
to a program component, all associated menus of options are
updated, but their current selection is held if possible.

In the Ceptre Editor, both sets and their elements must be
fully typed by the user. Predicates only permit the user to type
the name. As any argument to a predicate is a set, these are
presented to the user via a menu of options which allow the
user to select the set from those that currently exist.

Rules consist of two groups of predicates: the first being a
list of conditions for the rule to fire, and the second the effects
of the rule on the successive state. When adding a predicate
to either group, the predicate is selected through a menu of
options consisting of predicates which are syntactically well-
formed. Selecting a predicate automatically updates the user
interface and provides the user with the appropriate number
of arguments. These arguments are also menus of options,
consisting of the appropriate set elements, variables which
have been created, or if the predicate is a condition, creation
of a new variable.

The initial state allows creation of ground predicates which
are instantiated predicates which are constructed entirely
through menus of options. First, the predicate is selected from
a list of syntactically well-formed predicates, updating the
user interface with the appropriate number of arguments. The
menu of options for arguments are elements taken from the
appropriate set as described by the predicate.

C. Executing the Model

When execution is started, the program runs with the current
initial state and rules, displaying the initial program state as
a multiset of ground predicates, and the rules which can be
used to transition to the next state. The transitions present in
the execution are presented as the rule name, followed by a
list of the instantiated variables in the rule. Selecting one of
the available options allows the user to execute the selected
transition and generate the next program state. Additionally,
the user may execute the program to quiescence (a program
state where no more rules can fire, if one exists) or enter a
number of steps which the program can automatically execute
by selecting the successive transitions at random.

D. Locking and Unlocking Components

The locking mechanism was implemented to avoid partial
programs which are not well-formed. This is done by having

two modes for every element in the program: unlocked and
locked. An unlocked element may be modified in any valid
way by the user at any point, but is not available in a menu of
options anywhere in the program and thus cannot be referenced.

If the lock function is toggled, the program element is
checked to ensure well-formedness. If the program element
is well formed, it will appear in menus of options for that
program element. If the program element is not well-formed,
the user will receive immediate feedback regarding the issue
and the program element remains in unlocked mode.

The choice for using the locking mechanism primarily
involved the requirement of feedback and conscious user action.
In order to lock a program component, the user must take a
conscious action. When the user takes this action, the editor
provides immediate feedback in case of failure. This feedback
makes it considerably more difficult to miss components which
are not well-formed.

V. Formative Study

To evaluate the editor we constructed a pilot study to answer
the following questions: (1) Are users able to rapidly construct
and understand models using the editor? (2) Is a formal logic
background required for the success of a user?

We observed eight participants recruited from our university
campus. This study, alongside previous literature on structure
editors, has led to design recommendations for improving the
user experience while constructing and modeling systems using
a structure editor.

A. Study Setup

We gave the participants a brief tutorial on creating a model
limited to 30 minutes. Then, the participants were asked to
modify the model they constructed during the tutorial during
a think aloud protocol while talking through their decisions
in a 30 minute session. The session was concluded with an
interview.

The tutorial for the study provided a walk-through to set up a
blocks world model. The blocks world model consisted of three
blocks on a table, and a robotic arm which could pick up and
set down blocks. The tutorial walked the participant through
adding the sets, predicates, rules, and starting world state,
ending with stepping through an execution of the program.

Extending the blocks world model followed the tutorial.
The first extension was to add a second robotic arm which
could pick up and set down blocks. This was designed to
evaluate the participant’s understanding of how the arms were
represented and how they interacted with blocks. The second
extension to the model was to add another block to the world.
This needed to be done in two parts, first adding a new block
to the appropriate set, demonstrating understanding of block
representation. The second part required the participant to add
the block in the initial state, demonstrating understanding of
the initial state’s purpose.

The third and final extension was for the participant to
add a rule which could allow the system to quiesce. The
conditions to do this were given: stack the blocks in alphabetical

order and remove them from the world. This task evaluated
the participant’s understanding of rules and transitions, the
predicates in the model, as well as program termination.

These tasks address the first research question as the
participants construct an extension to the model. These model
extensions give us insight on the level of model understanding
the participants have regarding the blocks world model.

After the model extension, an interview was conducted
alongside a demographic survey. Participants were asked if
they had taken a course on logic, and the number of years of
programming experience the participant had, and were asked
about the tool and supporting materials. This addresses research
question 2, and informs future designs of the editor.

VI. Study Results

Among the participants in the study, all eight had prior
programming experience with a mean of 3.75 years, median
of 3.5, and mode of 2 and 4. Of the eight participants, seven
finished the model extension within the allotted time, while
one participant reached a timed cutoff at the final prompt. One
participant exhibited language barrier issues during the study.

A. Model Prompt Solutions

Regarding the observed solutions to the model extensions
there was a single solution to adding a block to the world, two
solutions for the robotic arms, and one solution for quiescence.

All eight participants finished the robotic arm solutions
correctly with two different solutions. The two solutions to the
robotic arm extension give different amounts of information
regarding the participant’s model understanding. The first
solution involved duplicating the predicates and rules associated
with the existing arm. Of the eight participants, six participants
started with this solution, and four finished with this solution.
This solution demonstrates an understanding of how the arms
were represented in the model and how the arms interacted
with the blocks.

The second solution involved adding a set named arm, in
which the participants added elements denoting the two arms,
and then extended the existing predicates with a new argument
which corresponded to the arm. Of the eight participants, two
started with this method, and four finished with this solution.
This solution demonstrates an understanding of how the arms
are represented in the model as well as how predicates interact
with sets, and how rules interact with predicates

Finally, the rule which allowed the program to reach
quiescence was completed by six of the eight participants
without significant assistance. Of the eight participants, one
participant did not understand the model predicates well enough
to complete the rule before the time ran out, and we hypothesize
one participant exhibited negative transfer from AI planning,
significantly increasing the time spent constructing the rule.
Additionally, all eight participants opted to test the quiescence
rule despite not being requested to do so in the prompt.

As participants walked through rule construction and execu-
tions, the participant’s descriptions of the model components
yield insight into their model understanding. During the

rule construction, describing the process of picking up a
block demonstrates the participant understands the meaning
of the condition and effect predicates in the world state. The
descriptions given during the execution show the understanding
of predicates in states alongside what rules actually mean when
acting upon those states.

B. Discussion

From the formative pilot study, we found that participants
exhibited model and logic understanding even when never
having been exposed to the model or system prior to the study.
These results support the hypothesis that the editor allows users
to rapidly construct and understand a model.

Experience with logic is correlated to participant success.
From the demographic survey, all the participants who success-
fully completed the model extension had previously taken a
logic course, where the participant who did not complete the
model extension had not. This provides a correlation between
prior logic experience and user success.

The study we performed reinforced the hypothesis that the
Ceptre Editor allows new users to begin programming a system
model rapidly, as well as preliminarily supporting that logic
experience contributes to user success. Additionally, the study
provided data which supports that the users understood the
model and logic, and that the users found it easy to do so.

VII. FutureWork

The next steps involve conducting additional studies for the
editor. The next study currently being designed, is with experts
in biological systems whom have system simulation needs but
limited programming experience. This study will address prior
programming influencing performance, as well as influence
further iterations of the program’s design by refining based on
feedback collected from the participants.

Future studies should provide a look into: (1) how novices
and experts in fields with system simulation needs construct
and execute programs in the Ceptre Editor; (2) how the users
expect the program to run; (3) what information the users
expect to receive from the program.

VIII. Conclusion

In this paper we have presented the Ceptre Editor, a
integrated development environment designed to assist pro-
gramming novices with system simulation needs and foster
interdisciplinary communication. We presented our pilot study
and evaluation, which demonstrated that new users are able
to rapidly construct and understand models using the Ceptre
Editor, and that a formal logic background is beneficial.

The study we performed provides evidence that combining
rule-based languages with introductory programming tool de-
sign is beneficial to the end-user-programmer. The Ceptre Editor
elicited positive feedback from the participants, and we believe
this work furthers assisting end-user-programmers with systems
thinking, and facilitating interdisciplinary communication.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 1755922. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

[1] P. Boutillier, M. Maasha, X. Li, H. F. Medina-Abarca, J. Krivine, J. Feret,
I. Cristescu, A. G. Forbes, and W. Fontana, “The Kappa platform for
rule-based modeling,” Bioinformatics, vol. 34, pp. i583–i592, 06 2018.

[2] A. Fowler, T. Fristce, and M. MacLauren, “Kodu game lab: a pro-
gramming environment,” The Computer Games Journal, vol. 1, no. 1,
pp. 17–28, 2012.

[3] S. Bistarelli, I. Cervesato, G. Lenzini, R. Marangoni, and F. Martinelli,
“On representing biological systems through multiset rewriting,” in
International Conference on Computer Aided Systems Theory, pp. 415–
426, Springer, 2003.

[4] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine, “Rule-based
modelling and model perturbation,” in Transactions on Computational
Systems Biology XI, pp. 116–137, Springer, 2009.

[5] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek, “Bionetgen:
software for rule-based modeling of signal transduction based on the
interactions of molecular domains,” Bioinformatics, vol. 20, no. 17,
pp. 3289–3291, 2004.

[6] I. Cervesato, N. Durgin, J. Mitchell, P. Lincoln, and A. Scedrov, “Relating
strands and multiset rewriting for security protocol analysis,” in Computer
Security Foundations Workshop, 2000. CSFW-13. Proceedings. 13th IEEE,
pp. 35–51, IEEE, 2000.

[7] S. Tisue and U. Wilensky, “Netlogo: Design and implementation of a
multi-agent modeling environment,” in Proceedings of agent, vol. 2004,
pp. 7–9, 2004.

[8] C. Martens, “Ceptre: A language for modeling generative interactive
systems,” in Eleventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2015.

[9] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, p. 16, 2010.

[10] C. Kelleher, D. Cosgrove, D. Culyba, C. Forlines, J. Pratt, and R. Pausch,
“Alice2: programming without syntax errors,” User Interface Software
and Technology, 01 2002.

[11] D. Weintrop and U. Wilensky, “Comparing block-based and text-based
programming in high school computer science classrooms,” ACM Trans.
Comput. Educ., vol. 18, pp. 3:1–3:25, Oct. 2017.

[12] M. Kölling, “The greenfoot programming environment,” Trans. Comput.
Educ., vol. 10, pp. 14:1–14:21, Nov. 2010.

[13] T. Ball, J. Protzenko, J. Bishop, M. Moskal, J. de Halleux, M. Braun,
S. Hodges, and C. Riley, “Microsoft touch develop and the bbc micro:
bit,” in 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), pp. 637–640, IEEE, 2016.

[14] A. Repenning, A. Ioannidou, and J. Zola, “Agentsheets: End-user
programmable simulations,” Journal of Artificial Societies and Social
Simulation, vol. 3, no. 3, pp. 351–358, 2000.

[15] K. T. Stolee, “Kodu language and grammar specification,” Microsoft
Research whitepaper, Retrieved September, vol. 1, pp. 4–6, 2010.

[16] C. Multiphysics, “Introduction to comsol multiphysics®,” COMSOL
Multiphysics, Burlington, MA, accessed Feb, vol. 9, p. 2018, 1998.

[17] J. B. Dabney and T. L. Harman, Mastering simulink. Pearson, 2004.
[18] G. U. Manual, “Goldsim probabilistic simulation environment,” GoldSim

Technology Group LLC, Issaquah, Washington, 2013.
[19] K. G. Brown, F. Smith, and G. Flach, “Goldsim dynamic-link library

(dll) interface for cementitious barriers partnership (cbp) code integration–
11444,” in WM2011 Conference, February, 2011.

[20] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine, “Rule-based
modelling, symmetries, refinements,” in Formal Methods in Systems
Biology (J. Fisher, ed.), (Berlin, Heidelberg), pp. 103–122, Springer
Berlin Heidelberg, 2008.

[21] H.-L. Tsai, C.-S. Tu, Y.-J. Su, et al., “Development of generalized
photovoltaic model using matlab/simulink,” in Proceedings of the world
congress on Engineering and computer science, vol. 2008, pp. 1–6, San
Francisco, USA, 2008.

[22] Y.-M. Lee and Y. Hwang, “A goldsim model for the safety assessment
of an hlw repository,” Progress in Nuclear Energy, vol. 51, no. 6-7,
pp. 746–759, 2009.

[23] S. S. Vattam, A. K. Goel, S. Rugaber, C. E. Hmelo-Silver, R. Jordan,
S. Gray, and S. Sinha, “Understanding complex natural systems by
articulating structure-behavior-function models,” Journal of Educational
Technology & Society, vol. 14, no. 1, pp. 66–81, 2011.

[24] A. Compagnoni, V. Sharma, Y. Bao, M. Libera, S. Sukhishvili, P. Bidinger,
L. Bioglio, and E. Bonelli, “Bioscape: A modeling and simulation lan-
guage for bacteria-materials interactions,” Electronic Notes in Theoretical
Computer Science, vol. 293, pp. 35–49, 2013.

